Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37623620

RESUMO

Candida auris is a globally emerging fungal pathogen that is associated with healthcare-related infections. The accurate and rapid detection of C. auris is crucial for effective infection prevention, control, and patient management. This study aimed to validate the analytical and diagnostic performance of the DiaSorin Molecular C. auris Detection Kit. The analytical specificity, sensitivity, and reproducibility of the assay were evaluated. The limit of detection (LOD) was determined to be 266 CFU/µL using the ZeptoMetrix Candida auris Z485 strain and standard calibration curves. The assay demonstrated high analytical specificity and showed no amplification against a diverse panel of bacteria and fungi. Clinical validation was conducted using deidentified residual axillary/groin surveillance culture specimens from C. auris culture-positive and culture-negative patients. The DiaSorin Molecular Detection Kit exhibited 100% agreement in sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) when compared to cultures coupled with MALDI-TOF identification. Intra- and inter-reproducibility testing demonstrated consistent and reliable diagnostic performance. This validated assay offers rapid and accurate detection of C. auris, facilitating timely implementation of infection control measures and appropriate patient care. The DiaSorin Molecular C. auris Detection Kit has the potential to aid in controlling the outbreaks caused by this emerging fungal pathogen. Providing a reliable diagnostic tool can contribute to the effective management and containment of C. auris infections in healthcare settings and ultimately improve patient outcomes.

2.
J Med Virol ; 95(6): e28878, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37322614

RESUMO

Monkeypox (MPOX) is a zoonotic disease that affects humans and other primates, resulting in a smallpox-like illness. It is caused by monkeypox virus (MPXV), which belongs to the Poxviridae family. Clinically manifested by a range of cutaneous and systemic findings, as well as variable disease severity phenotypes based on the genetic makeup of the virus, the cutaneous niche and respiratory mucosa are the epicenters of MPXV pathogenicity. Herein, we describe the ultrastructural features of MPXV infection in both human cultured cells and cutaneous clinical specimens collected during the 2022-2023 MPOX outbreak in New York City that were revealed through electron microscopy. We observed typical enveloped virions with brick-shaped morphologies that contained surface protrusions, consistent with the classic ultrastructural features of MPXV. In addition, we describe morpho-functional evidence that point to roles of distinct cellular organelles in viral assembly during clinical MPXV infection. Interestingly, in skin lesions, we found abundant melanosomes near viral assembly sites, particularly in the vicinity of mature virions, which provides further insight into virus-host interactions at the subcellular level that contribute to MPXV pathogenesis. These findings not only highlight the importance of electron microscopic studies for further investigation of this emerging pathogen but also in characterizing MPXV pathogenesis during human infection.


Assuntos
Dermatopatias , Animais , Humanos , Vírus da Varíola dos Macacos/genética , Virulência , Primatas , Genômica
3.
J Infect Dis ; 228(5): 564-575, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37104046

RESUMO

BACKGROUND: The number of exposures to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to vaccine antigens affect the magnitude and avidity of the polyclonal response. METHODS: We studied binding and avidity of different antibody isotypes to the spike, the receptor-binding domain (RBD), and the nucleoprotein (NP) of wild-type (WT) and BA.1 SARS-CoV-2 in convalescent, mRNA vaccinated and/or boosted, hybrid immune individuals and in individuals with breakthrough cases during the peak of the BA.1 wave. RESULTS: We found an increase in spike-binding antibodies and antibody avidity with increasing number of exposures to infection and/or vaccination. NP antibodies were detectible in convalescent individuals and a proportion of breakthrough cases, but they displayed low avidity. Omicron breakthrough infections elicited high levels of cross-reactive antibodies between WT and BA.1 antigens in vaccinated individuals without prior infection directed against the spike and RBD. The magnitude of the antibody response and avidity correlated with neutralizing activity against WT virus. CONCLUSIONS: The magnitude and quality of the antibody response increased with the number of antigenic exposures, including breakthrough infections. However, cross-reactivity of the antibody response after BA.1 breakthroughs, was affected by the number of prior exposures.


Assuntos
Anticorpos Antivirais , Afinidade de Anticorpos , Infecções Irruptivas , COVID-19 , SARS-CoV-2 , Animais , Humanos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Infecções Irruptivas/sangue , Infecções Irruptivas/imunologia , Chlorocebus aethiops , COVID-19/sangue , COVID-19/imunologia , COVID-19/prevenção & controle , Teste Sorológico para COVID-19 , SARS-CoV-2/imunologia , Vacinação , Células Vero , Vacina BNT162/imunologia , Vacina BNT162/uso terapêutico
4.
Emerg Microbes Infect ; 12(1): e2192830, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36927408

RESUMO

Monkeypox (MPOX) is a zoonotic disease endemic to regions of Central/Western Africa. The geographic endemicity of MPV has expanded, broadening the human-monkeypox virus interface and its potential for spillover. Since May 2022, a large multi-country MPV outbreak with no proven links to endemic countries has originated in Europe and has rapidly expanded around the globe, setting off genomic surveillance efforts. Here, we conducted a genomic analysis of 23 MPV-infected patients from New York City during the early outbreak, assessing the phylogenetic relationship of these strains against publicly available MPV genomes. Additionally, we compared the genomic sequences of clinical isolates versus culture-passaged samples from a subset of samples. Phylogenetic analysis revealed that MPV genomes included in this study cluster within the B.1 lineage (Clade IIb), with some of the samples displaying further differentiation into five different sub-lineages of B.1. Mutational analysis revealed 55 non-synonymous polymorphisms throughout the genome, with some of these mutations located in critical regions required for viral multiplication, structural and assembly functions, as well as the target region for antiviral treatment. In addition, we identified a large majority of polymorphisms associated with GA > AA and TC > TT nucleotide replacements, suggesting the action of human APOBEC3 enzyme. A comparison between clinical isolates and cell culture-passaged samples failed to reveal any difference. Our results provide a first glance at the mutational landscape of early MPV-2022 (B.1) circulating strains in NYC.


Assuntos
Vírus da Varíola dos Macacos , Humanos , Vírus da Varíola dos Macacos/genética , Filogenia , Cidade de Nova Iorque/epidemiologia , Surtos de Doenças
5.
mSphere ; 7(4): e0019322, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35703544

RESUMO

In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and "to develop, validate, improve, and implement serological testing and associated technologies" (https://www.cancer.gov/research/key-initiatives/covid-19/coronavirus-research-initiatives/serological-sciences-network). SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology standard reference material and first WHO international standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. SeroNet institutions reported development of a total of 27 enzyme-linked immunosorbent assay (ELISA) methods, 13 multiplex assays, and 9 neutralization assays and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. In conclusion, SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons. IMPORTANCE SeroNet institutions have developed or implemented 61 diverse COVID-19 serological assays and are collaboratively working to harmonize these assays using reference materials to establish standardized reporting units. This will facilitate clinical interpretation of serology results and cross-comparison of research data.


Assuntos
COVID-19 , Anticorpos Antivirais , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , SARS-CoV-2 , Testes Sorológicos/métodos
6.
medRxiv ; 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35262095

RESUMO

Background: In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and "to develop, validate, improve, and implement serological testing and associated technologies." SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. Methods: To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. SARS-CoV-2 serology standard reference material and First WHO International Standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. Results: SeroNet institutions reported development of a total of 27 ELISA methods, 13 multiplex assays, 9 neutralization assays, and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. Conclusions: SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 virus and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons.

7.
J Pathol Inform ; 13: 2, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35136670

RESUMO

BACKGROUND: Pandemics are unpredictable and can rapidly spread. Proper planning and preparation for managing the impact of outbreaks is only achievable through continuous and systematic collection and analysis of health-related data. We describe our experience on how to comply with required reporting and develop a robust platform for surveillance data during an outbreak. MATERIALS AND METHODS: At Mount Sinai Health System, New York City, we applied Visiun, a laboratory analytics dashboard, to support main response activities. Epic System Inc.'s SlicerDicer application was used to develop clinical and research reports. We followed World Health Organization (WHO); federal and state guidelines; departmental policies; and expert consultation to create the framework. RESULTS: The developed dashboard integrated data from scattered sources are used to seamlessly distribute reports to key stakeholders. The main report categories included federal, state, laboratory, clinical, and research. The first two groups were created to meet government and state reporting requirements. The laboratory group was the most comprehensive category and included operational reports such as performance metrics, technician performance assessment, and analyzer metrics. The close monitoring of testing volumes and lab operational efficiency was essential to manage increasing demands and provide timely and accurate results. The clinical data reports were valuable for proper managing of medical surge requirements, such as healthcare workforce and medical supplies. The reports included in the research category were highly variable and depended on healthcare setting, research priorities, and available funding. We share a few examples of queries that were included in the designed framework for research projects. CONCLUSION: We reviewed here the key components of a conceptual surveillance framework required for a robust response to COVID-19 pandemics. We demonstrated leveraging a lab analytics dashboard, Visiun, combined with Epic reporting tools to function as a surveillance system. The framework could be used as a generic template for possible future outbreak events.

8.
J Infect Dis ; 223(1): 47-55, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33104179

RESUMO

Passive transfer of antibodies from COVID-19 convalescent patients is being used as an experimental treatment for eligible patients with SARS-CoV-2 infections. The United States Food and Drug Administration's (FDA) guidelines for convalescent plasma initially recommended target antibody titers of 160. We evaluated SARS-CoV-2 neutralizing antibodies in sera from recovered COVID-19 patients using plaque reduction neutralization tests (PRNT) at moderate (PRNT50) and high (PRNT90) stringency thresholds. We found that neutralizing activity significantly increased with time post symptom onset (PSO), reaching a peak at 31-35 days PSO. At this point, the number of sera having neutralizing titers of at least 160 was approximately 93% (PRNT50) and approximately 54% (PRNT90). Sera with high SARS-CoV-2 antibody levels (>960 enzyme-linked immunosorbent assay titers) showed maximal activity, but not all high-titer sera contained neutralizing antibody at FDA recommended levels, particularly at high stringency. These results underscore the value of serum characterization for neutralization activity.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/terapia , Testes de Neutralização , Ensaio de Imunoadsorção Enzimática , Humanos , Imunização Passiva , Soroterapia para COVID-19
9.
Cancer Cell ; 38(5): 594-597, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33086031

RESUMO

Coronavirus disease 2019 (COVID-19), like cancer, is a complex disease with clinical phases of progression. Initially conceptualized as a respiratory disease, COVID-19 is increasingly recognized as a multi-organ and heterogeneous illness. Disease staging is a method for measuring the progression and severity of an illness using objective clinical and molecular criteria. Integral to cancer staging is "metastasis," defined as the spread of a disease-producing agent, including neoplastic cells and pathogens such as certain viruses, from the primary site to distinct anatomic locations. Staging provides valuable frameworks and benchmarks for clinical decision-making in patient management, improved prognostication, and evidence-based treatment selection.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/complicações , Inflamação/etiologia , Insuficiência de Múltiplos Órgãos/etiologia , Pneumonia Viral/complicações , Índice de Gravidade de Doença , Internalização do Vírus , Replicação Viral , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Humanos , Inflamação/patologia , Insuficiência de Múltiplos Órgãos/patologia , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2
10.
Lancet Microbe ; 1(7): e283-e289, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33015652

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. The proportion of infected individuals who seroconvert is still an open question. In addition, it has been shown in some individuals that viral genome can be detected up to 3 months after symptom resolution. We investigated both seroconversion and PCR positivity in a large cohort of convalescent serum donors in the New York City (NY, USA) region. METHODS: In this observational study, we ran an outreach programme in the New York City area. We recruited participants via the REDCap (Vanderbilt University, Nashville, TN, USA) online survey response. Individuals with confirmed or suspected SARS-CoV-2 infection were screened via PCR for presence of viral genome and via ELISA for presence of anti-SARS-CoV-2 spike antibodies. One-way ANOVA and Fisher's exact test were used to measure the association of age, gender, symptom duration, and days from symptom onset and resolution with positive antibody results. FINDINGS: Between March 26 and April 10, 2020, we measured SARS-CoV-2 antibody titres in 1343 people. Of the 624 participants with confirmed SARS-CoV-2 infection who had serologies done after 4 weeks, all but three seroconverted to the SARS-CoV-2 spike protein, whereas 269 (37%) of 719 participants with suspected SARS-CoV-2 infection seroconverted. PCR positivity was detected up to 28 days from symptom resolution. INTERPRETATION: Most patients with confirmed COVID-19 seroconvert, potentially providing immunity to reinfection. We also report that in a large proportion of individuals, viral genome can be detected via PCR in the upper respiratory tract for weeks after symptom resolution, but it is unclear whether this signal represents infectious virus. Analysis of our large cohort suggests that most patients with mild COVID-19 seroconvert 4 weeks after illness, and raises questions about the use of PCR to clear positive individuals. FUNDING: None.


Assuntos
COVID-19 , Anticorpos Antivirais , COVID-19/diagnóstico , COVID-19/terapia , Humanos , Imunização Passiva , Cidade de Nova Iorque/epidemiologia , Reação em Cadeia da Polimerase , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Soroterapia para COVID-19
11.
Nat Med ; 26(11): 1708-1713, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32934372

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a new human disease with few effective treatments1. Convalescent plasma, donated by persons who have recovered from COVID-19, is the acellular component of blood that contains antibodies, including those that specifically recognize SARS-CoV-2. These antibodies, when transfused into patients infected with SARS-CoV-2, are thought to exert an antiviral effect, suppressing virus replication before patients have mounted their own humoral immune responses2,3. Virus-specific antibodies from recovered persons are often the first available therapy for an emerging infectious disease, a stopgap treatment while new antivirals and vaccines are being developed1,2. This retrospective, propensity score-matched case-control study assessed the effectiveness of convalescent plasma therapy in 39 patients with severe or life-threatening COVID-19 at The Mount Sinai Hospital in New York City. Oxygen requirements on day 14 after transfusion worsened in 17.9% of plasma recipients versus 28.2% of propensity score-matched controls who were hospitalized with COVID-19 (adjusted odds ratio (OR), 0.86; 95% confidence interval (CI), 0.75-0.98; chi-square test P value = 0.025). Survival also improved in plasma recipients (adjusted hazard ratio (HR), 0.34; 95% CI, 0.13-0.89; chi-square test P = 0.027). Convalescent plasma is potentially effective against COVID-19, but adequately powered, randomized controlled trials are needed.


Assuntos
COVID-19/patologia , COVID-19/terapia , Adulto , Idoso , Anticorpos Antivirais/sangue , COVID-19/epidemiologia , Estudos de Casos e Controles , Feminino , Humanos , Imunização Passiva , Masculino , Pessoa de Meia-Idade , Pandemias , Pontuação de Propensão , Estudos Retrospectivos , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Resultado do Tratamento , Soroterapia para COVID-19
14.
Nat Med ; 26(10): 1636-1643, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32839624

RESUMO

Several studies have revealed that the hyper-inflammatory response induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major cause of disease severity and death. However, predictive biomarkers of pathogenic inflammation to help guide targetable immune pathways are critically lacking. We implemented a rapid multiplex cytokine assay to measure serum interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α and IL-1ß in hospitalized patients with coronavirus disease 2019 (COVID-19) upon admission to the Mount Sinai Health System in New York. Patients (n = 1,484) were followed up to 41 d after admission (median, 8 d), and clinical information, laboratory test results and patient outcomes were collected. We found that high serum IL-6, IL-8 and TNF-α levels at the time of hospitalization were strong and independent predictors of patient survival (P < 0.0001, P = 0.0205 and P = 0.0140, respectively). Notably, when adjusting for disease severity, common laboratory inflammation markers, hypoxia and other vitals, demographics, and a range of comorbidities, IL-6 and TNF-α serum levels remained independent and significant predictors of disease severity and death. These findings were validated in a second cohort of patients (n = 231). We propose that serum IL-6 and TNF-α levels should be considered in the management and treatment of patients with COVID-19 to stratify prospective clinical trials, guide resource allocation and inform therapeutic options.


Assuntos
Infecções por Coronavirus/imunologia , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Interleucina-8/imunologia , Pneumonia Viral/imunologia , Fator de Necrose Tumoral alfa/imunologia , Idoso , Betacoronavirus , COVID-19 , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/terapia , Citocinas/imunologia , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/mortalidade , Pneumonia Viral/fisiopatologia , Pneumonia Viral/terapia , SARS-CoV-2 , Índice de Gravidade de Doença , Taxa de Sobrevida
15.
medRxiv ; 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32511562

RESUMO

The COVID-19 pandemic caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to more than 100,000 deaths in the United States. Several studies have revealed that the hyper-inflammatory response induced by SARS-CoV-2 is a major cause of disease severity and death in infected patients. However, predictive biomarkers of pathogenic inflammation to help guide targetable immune pathways are critically lacking. We implemented a rapid multiplex cytokine assay to measure serum IL-6, IL-8, TNF-α, and IL-1ß in hospitalized COVID-19 patients upon admission to the Mount Sinai Health System in New York. Patients (n=1484) were followed up to 41 days (median 8 days) and clinical information, laboratory test results and patient outcomes were collected. In 244 patients, cytokine measurements were repeated over time, and effect of drugs could be assessed. Kaplan-Meier methods were used to compare survival by cytokine strata, followed by Cox regression models to evaluate the independent predictive value of baseline cytokines. We found that high serum IL-6, IL-8, and TNF-α levels at the time of hospitalization were strong and independent predictors of patient survival. Importantly, when adjusting for disease severity score, common laboratory inflammation markers, hypoxia and other vitals, demographics, and a range of comorbidities, IL-6 and TNF-α serum levels remained independent and significant predictors of disease severity and death. We propose that serum IL-6 and TNF-α levels should be considered in the management and treatment of COVID-19 patients to stratify prospective clinical trials, guide resource allocation and inform therapeutic options. We also propose that patients with high IL-6 and TNF-α levels should be assessed for combinatorial blockade of pathogenic inflammation in this disease.

16.
Appl Immunohistochem Mol Morphol ; 28(7): 501-507, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31241561

RESUMO

Myeloid sarcoma (MS) is defined as an extramedullary mass-forming lesion composed of immature myeloid cells. It is a rare but well-known manifestation of acute myeloid leukemia. Pediatrics testicular MS may pose a possible diagnostic challenge, an issue that is underscored in the few testicular pediatric MS cases reported in the literature. Herein, we report a series of 5 cases of pediatric testicular MS that are evaluated at the morphologic and immunohistochemical levels with correlation with the KMT2A (MLL) rearrangement status. Three patients presented with no prior history of acute myeloid leukemia. All 5 cases showed monoblastic morphology; positive for CD33, CD43, CD68, CD163, CD4 (dim), and lysozyme; and negative for CD10, CD34, CD117, and myeloperoxidase. KMT2A (MLL) rearrangement was detected in 4 of the 5 cases. In the literature, 8 more cases of pediatric testicular lymphoma were reported. Most of them showed monocytic differentiation and KMT2A (MLL) rearrangement was reported in 3 of the cases. In conclusions, testicular MS in pediatric patients shows monoblastic differentiation which may be attributed to the KMT2A (MLL) rearrangement. We also highlight the importance of using an extended immunohistochemistry panel in the diagnosis of MS.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Leucemia Mieloide Aguda/complicações , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Sarcoma Mieloide/diagnóstico , Sarcoma Mieloide/metabolismo , Neoplasias Testiculares/metabolismo , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD4/metabolismo , Criança , Pré-Escolar , Rearranjo Gênico , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Lactente , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucossialina/metabolismo , Masculino , Muramidase/metabolismo , Neprilisina/metabolismo , Peroxidase/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores de Superfície Celular/metabolismo , Sarcoma Mieloide/complicações , Sarcoma Mieloide/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia
18.
Stem Cell Res ; 41: 101637, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31731181

RESUMO

The last several years have witnessed renewed interest regarding the contribution of cancer stem cells in tumorigenesis and neoplastic heterogeneity. It has been reported that patients who undergo bone marrow transplantation are more prone to develop a malignancy during their life time; usually hematological tumors, but solid neoplasms may also develop, which in certain instances are donor-derived. It has also been well documented that multipotent bone marrow derived cells can migrate to diverse organs, differentiating into various histological lineages. The present study reports an experimental syngeneic transplantation model, using fluorescently tagged bone marrow cells from p53 null male mice into female wild-type counterparts. We found that transplanted non-neoplastic mutant bone marrow cells can generate tumors of distinct histogenesis, including thymic lymphomas, sarcomas, and carcinomas after carcinogen induction, providing evidence that multipotent cancer-prone stem cells can reside in the bone marrow and are transplantable.


Assuntos
Células da Medula Óssea/metabolismo , Transformação Celular Neoplásica/metabolismo , Transplante de Neoplasias , Neoplasias Experimentais/metabolismo , Animais , Células da Medula Óssea/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Transplante Isogênico , Proteína Supressora de Tumor p53/deficiência
19.
Appl Immunohistochem Mol Morphol ; 27(9): 644-648, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30179888

RESUMO

Classifying diffuse large B-cell lymphoma (DLBCL) according to the cell-of-origin (COO) was first proposed using gene expression profiling; accordingly, DLBCL is classified into germinal-center B-cell type and activated B-cell type. Immunohistochemistry (IHC)-based classification using different algorithms is used widely due to the ability to use formalin-fixed paraffin-embedded tissue. Recently, newer techniques using RNA expression from formalin-fixed paraffin-embedded were introduced including the nCounter NanoString platform assay. In this brief report, we study the degree of concordance between the NanoString assay and 6 commonly utilized IHC-based algorithms to classify DLBCL cases by COO. Stains for CD10, BCL2, BCL6, FOXP-1, MUM-1, and LOM2 were used to classify a cohort of DLBCL by COO according to the respective IHC-algorithms. Then, RNA was extracted from the same cases for NanoString assay classification. The degree of concordance was calculated between the NanoString classification and each IHC-algorithm as well as among the different IHC-algorithm themselves. The concordance in COO classification of DLBCL between NanonoString assay and IHC-based algorithms is variable depending on the used IHC-algorithm; the highest concordance is seen with the Visco algorithm (κ=0.69; P=0.001). Therefore, discrepancies between the recently introduced NanoString assay and the commonly utilized IHC-algorithms are expected to some extent and should be taken into consideration when interpreting conflicting results.


Assuntos
Linfócitos B/patologia , Linfoma Difuso de Grandes Células B/diagnóstico , Células-Tronco Neoplásicas/fisiologia , Algoritmos , Biomarcadores Tumorais/metabolismo , Humanos , Imuno-Histoquímica , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Nanoestruturas , Neprilisina/genética , Neprilisina/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , RNA/análise , Reprodutibilidade dos Testes , Transcriptoma
20.
Lab Invest ; 99(4): 539-550, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30446717

RESUMO

Myocyte enhancer-binding factor 2B (MEF2B) has been implicated as a transcriptional regulator for BCL6. However, details about the interaction between MEF2B and BCL6 during expression, as well as the relationship of MEF2B to the expression of other germinal center (GC) markers, have not yet been fully explained. Using germinal center B-cell-like diffuse large B-cell lymphoma (GC-DLBCL) and activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL) cell lines, we analyzed the expression of MEF2B and its associations with BCL6, CD10, and ERK. Furthermore, small interfering RNA (siRNA) was used to study the possible effects of MEF2B knockdown on these proteins and cell growth. Analysis of the BCL6 transcriptional complex was performed using electrophoretic mobility shift assay. The correlation between MEF2B expression and the genetic type of DLBCL was assessed using immunohistochemistry on 111 patient samples, and via in silico analysis of publicly available microarray (Gene Expression Omnibus (GEO)) datasets. Our results indicate that the expression of MEF2B protein is important for the growth of GC-DLBCL cells, as evidenced by MEF2B knockdown inhibition of cell growth and the subsequent suppression of BCL6, CD10, and ERK phosphorylation. Analysis of BCL6 transcription factors in nuclear extracts of MEF2-expressing DLBCL cells showed involvement of MEF2B with AP-2α and BCL6 proteins in the formation of the BCL6 gene transcriptional complex. Indeed, differential expression of MEF2B in the GC-DLBCL is statistically significant compared to the ABC-DLBCL in the GEO datasets, as well as in tissue microarray, as indicated via immunohistochemistry (Visco-Young algorithm). Our findings indicate that MEF2B is an essential component of the BCL6 gene transcriptional complex for the regulation of DLBCL growth via the promotion of BCL6 expression. Beyond its regulatory role in DLBCL growth, MEF2B expression correlated positively with BCL6 and CD10 expression, and was preferentially expressed in the GBC-DLBCL group.


Assuntos
Centro Germinativo/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Linhagem Celular , Humanos , Imuno-Histoquímica , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...